“jgt” — 2008/7/28 — 15:06 — page 1 — #1

Vol. [VOL], No. [ISS]: 1-15

Instant Liquids:
Fast Screen-Space Surface Generation
for Particle-Based Liquids

Hilko Cords and Oliver Staadt
University of Rostock, Germany
Institute of Computer Science

Visual Computing Group

Abstract. We present Instant Liquids, a fast GPU-based method for rendering
boundary surfaces from 3D particle-based fluid simulations. Instead of extract-
ing and tracking polygonal meshes of boundary surfaces in 3D world space, we
devise a new meshless 2D screen-space approach. First, we generate a smooth
view-dependent depth map from the 3D particle cloud. Then, surface normals are
derived directly from the depth map and lighting calculations are carried out in
screen-space. We extend this basic algorithm with efficient reflection and refraction
approximations. The advantage of our method over existing rendering approaches
for particle-based fluids models is the fact that we do not have to extract 3D or 2D
meshes at any time. Thus, we improve visualization time for particle-based liquids
to a level were it falls significantly below simulation time. Furthermore, effects such
as breaking waves and splashes are supported automatically.

1. Introduction

The use of physics-based liquid simulations has become a staple of visual ef-
fects and computer animation. Complex and photo-realistic liquid effects can
be simulated and rendered with high quality, but simulation and rendering

© AK Peters, Ltd.
1 1086-7651/06 $0.50 per page

“jgt” — 2008/7/28 — 15:06 — page 2 — #2

2 journal of graphics tools

time takes many seconds if not minutes per frame. In general, this process
involves three steps: (i) simulation, (ii) surface extraction, and (iii) render-
ing. Underlying physics is simulated by solving, or at least approximating,
the Navier-Stokes equations using a grid-based Eulerian (e.g., [Stam 99]) or
a 3D particle-based Lagrangian approach, e.g. Smoothed Particle Hydrody-
namics (SPH, [Miiller et al. 03]). SPH finds a particle-based solution to the
3D Navier-Stokes equations by approximating the local physical properties of
liquids using local neighborhood comparisons. The use of GPU-based sim-
ulations have lead to substantial improvements of simulation performance.
Thus, the bottleneck in fluid animation has been shifted from simulation to
surface extraction and rendering. Hence, the need for fast rendering methods
handling tens of thousands of particles in real-time has increased immensely
over the last few years. In off-line environments, a detailed polygonal mesh is
extracted from particle cloud (e.g., marching cubes [Lorensen and Cline 87])
and frequently, ray tracing is used to render the resulting surface. However,
this process is too slow for interactive applications such as computer games.

Highly realistic and detailed liquid surfaces can be achieved using height
field-based approaches, e.g., [Tessendorf 04]. However, more complex behavior
of liquids, such as splashes and breaking waves, cannot be represented ade-
quately as height fields. Therefore, 3D surfaces are desirable to support such
effects. Recently, the concept of screen-space meshes was presented in [Miiller
et al. 07]. The complexity of a volume discretization in world space is reduced
to an area discretization in screen-space. The liquid is sampled CPU-based
by a modified marching squares algorithm with plausible results even in real-
time environments. The screen-space meshes are related to our technique and
the creation process of the basic depth map is similar. However, it differs
completely in the surface generation, normal extraction, and rendering steps.

We present Instant Liquids, a view-dependent screen-space rendering method
for highly-dynamic transparent liquids (e.g., water) based on 3D particle-
based simulation. We use the depth map of a particle cloud to approximate
the boundary surface and determine the normals in screen-space. We avoid
the costly step of extracting a polygonal surface approximation for every step
of the simulation and, thus, increase overall performance substantially. Using
screen-space projection, a 3D liquid can be rendered including effects such as
breaking waves and splashes, and approximations of reflection and refraction.
It is important to note that our scheme can be implemented entirely on the
GPU, freeing the CPU for numerical simulation calculations.

We demonstrate the power of our approach in a number of application
examples, including examples from real-time SPH simulations, mass-point
schemes, and breaking waves. As shown in Section 5, the high performance
of Instant Liquids makes liquid simulation and rendering in today’s computer
games or virtual reality applications possible. A video demonstrating our
technique in practice is available online.

“jgt” — 2008/7/28 — 15:06 — page 3 — #3

Cords and Staadt: Instant Liquids 3

particle cloud

R .

smoothed depth map

normal map final liquid

Figure 1. Instant Liquids: The main steps (waterfall, front view).

2. Instant Liquids — Basic Algorithm

We take as input the positions of an unstructured 3D particle cloud x;, ..., xy €
R? and the homogeneous projection matrix P € R**4, Additionally, the point
splat radius 7, and the filter kernel size £ can be used to control the visual
behavior of the liquid, but could also be estimated within a pre process. The
outline of the basic algorithm, which is implemented as a fragment shader, is
as follows (Figure 1):

1. Create depth map from 3D particle cloud
2. Smooth depth values
3. Extract normal map from smoothed depth map

4. Perform per-fragment lighting

These four steps are repeated every time a particle position or the camera
position changes. Note that the smoothed depth map can also be interpreted
as a dynamic height field viewed from above. Thus, the process of normal
map extraction is similar to extracting a normal map from a height field.
We elucidate additional view-dependent optical effects such as reflection and
refraction in Section 3.

2.1. Depth Map Creation

We first generate a depth map Z € R"W>*# with depth values 2,5 and res-
olution W x H as depicted in Figure 1. For each particle with position x;,
we render a circular point splat into the frame buffer. To avoid the known
non-linearity of z-values in screen-space in the case of perspective projection,
we transform the homogeneous coordinates of z,y, z, w to screen-space coor-
dinates 2, yp, 2p:

“jgt” — 2008/7/28 — 15:06 — page 4 — #4

4 journal of graphics tools

<
Sl
I

=

—

+
oy | (1)
z

were W denotes the horizontal and H the vertical resolution of the screen-
space. As a result, the z-coordinate z, is linear and describes the distance to
the camera.

The point splat radius r, influences the visual appearance of the liquid. In
general, the radius can be determined according to distances of neighboring
particles in screen-space, however, this would require expensive topological
neighborhood searches. Since we aim at dynamic liquids, we estimate 7,
within a preprocess. Particle radius 7 is determined in world space for the
calm liquid, depending on the nearest neighbor. The projected radii r,, 7,7,
in screen-space of particle size r in world space can be determined as described
in [Miiller et al. 07]:

. rW\/p%,l + 7o +pis/w
= TH\/pg,l +p§_’2 +p%’3/w ’ (2)
Tz

.

where p; ; are the indices of the projection matrix P. Thus, point splats
are scaled according to their distance to camera position. If the aspect ratio
of the projection is chosen by W/H, no distortion occurs and the particles
appear as circles in screen-space (r, = r; = ry). Afterwards, an empirical
adaption depending on the specific data can increase details or can be used
to model the liquids appearance. Rendering all particles according to these
transformations into the depth buffer result in Z.

2.2. Screen-Space Surface Smoothing

In order to obtain a smooth surface, we apply a low pass filter to all depth
values z; ; (Figure 1, step 3). We experimented with different separable filters
and decided to use a binomial filter, which delivers good results and can be
implemented efficiently.

We estimate the initial kernel size k by setting it equal to the point splat
radius 7,. Based on this estimate, the user can vary the kernel size to control
the appearance of the liquid. If the kernel is too small, holes in the surface
may appear, but if it is large, “splashes” of liquid separated from the surface
are suppressed.

“jgt” — 2008/7/28 — 15:06 — page 5 — #5

Cords and Staadt: Instant Liquids 5

Screen Space World Space

y
I—i Pixel Grid Near Plane Far Plane

Figure 2. Calculation of pixel grid spacing in screen coordinates.

2.3. Normal Extraction

We extract a normal map N € RW>*H by determining the partial derivations
of the smoothed depth map. If we interpret the smoothed depth map as
height field, its screen-space coordinates x,, yp,, 2z, sample surface coordinates
in world space. Thus, the distance of surface point samples in world space
depends on the camera position. In other words, neighboring elements (i. e.,
pixels) in the smoothed depth map can have different distance in screen-space
(e.g., parallax), which is important in calculating the gradient.

Consider, for example, two objects in world space, one close to the near clip-
ping plane and the other close to the far clipping plane. Due to perspective
foreshortening, we obtain different depth values for two neighboring pixels in
screen-space corresponding to both objects, respectively: neighboring pixels
in screen-space corresponding to the object closer to the near plane are signifi-
cantly closer to each other in world space than the two pixels corresponding to
the object closer to the far plane. Therefore, we determine the actual distance
of neighboring pixels at distance z by scaling the projected = — y-pixel-grid
distance at the near plane wi, by linearly to the grid distance at the far plane
wa, ho (see Figure 2):

Ne(z) = wy+ (we —wip)z (3)
hy + (ha — hy)z. (4)

>
<
—

N
&

Using these values, the partial derivatives of the smoothed depth map can be
discretized in a straight forward fashion by forward differencing. Hence, N
can be constructed as the normalized gradient.

Within the described method above, we assume a particle cloud without
given normals. However, if the normals are given, the normals could be splat
directly, to save the depth map creation process.

“jgt” — 2008/7/28 — 15:06 — page 6 — #6

6 journal of graphics tools

B

Figure 3. Dragon with lighting only at time steps ¢; (i = 0,5, 10).

2.4. Lighting

All lighting calculations are carried out in screen-space. First, we obtain the
light and camera position in screen-space, 1, and c,, according to Equation 1.
This enables us to calculate the light direction 1 and view direction v for
any entry in Z. Then, we evaluate the standard Phong lighting model in
screen-space (Figure 3).

Note that, due to smoothing the depth map Z, sharp edges, such as those of
liquid contours, are smoothed out and, thus, are shaded incorrectly. We will
address this problem in Section 3. Furthermore, we would like to point out
that unrealistic lighting effects on smoothed contours can occur, if the liquid
lies between camera and light positions. Since we generate the normal map in
screen-space, all normals point towards the image plane and, thus, back face
normals cannot be represented in a smoothed depth map in general.

3. Instant Liquids — Extensions

In the following, we describe extensions to the basic algorithm to increase
visual realism of the rendered liquid. Due to the image-based approach, well-
known image filtering operations can be used to increase the quality of the
results. For example, we employ additional color maps to map material prop-
erties onto the surface as depicted in Figure 6.

Reflection & Refraction Liquids such as water are highly transparent.
Therefore, simulating view-dependent optical effects such as reflection and
refraction is very important to increase visual realism. One can observe that
reflection and refraction effects of real dynamic liquids are so complex that
even approximations of these effects are adequate for believable animated
sequences. This motivated us to devise an image-based approximation of
refraction, since accurate refractions of liquids in complex scenes are difficult
to achieve at high frame rates. This allows us to add plausible refraction effects

“jgt” — 2008/7/28 — 15:06 — page T — #T7

Cords and Staadt: Instant Liquids 7

of liquid surfaces including intersection objects, even close to the viewer. To
avoid multi-pass rendering, our technique is restricted to single refraction.
This is a valid assumption if liquids are contained in opaque tanks. Thus,
light rays refracted once at the liquid surface would not leave the tank (except
in very “rough” surface conditions).

Instead of adhering to the laws of physics, reflection and refraction can
be approximated by perturbing surface normals [Sousa 05]. We go one step
further and determine physical reflection and refraction vectors, which are
used to access an environment map. The reflection vector r is described by
the law of reflection

r=v—2(v,n)n, (5)
and the refraction vector t is described by the Snell’s Law with respect to the
refraction ratio of refraction indices n = 71

B=1-n*(1-(v,n)?). (6)
¢ — nv—(v,n) +vVk)n : k>0 (7)
0 : k<0~

Here, v is the view direction and n is the surface normal in screen-space.
(v,n) is the scalar product of vectors v and n. Thus, we can determine the
reflection and refraction vectors in screen-space.

We approximate the refraction effect by accessing a refraction map R, which
represents the complete actual scene rendered from the camera position —
without liquid. This map is accessed by a variation d = (z,y) of the z and y
component of the refraction vector t in screen-space:

d = Ciny - (Z;) : (8)

Due to the screen-space approach, we can neglect the z-coordinate ¢, of t =
(tz,ty,t.). The intensity of refraction effect is controlled by parameter cing.

We employ a standard cube mapping technique to approximate reflections.
Liquid surrounding scene is rendered into the cube map from the view of the
liquid’s center of mass. The cube map generated that way is simply accessed
by the reflection vector r. However, this approach cannot reflect objects close
to or intersecting the water surface realistically. Additionally, we would like
to point out that liquid volumes in a scene comprising a surrounding cube
that is at infinite distance can be reflected and refracted realistically using
cube mapping.

The composition of reflection and refraction intensities is described by the
Fresnel equations and leads, with respect to refraction indices ny, no and
normalized vectors of view direction v, normal n and refraction vector t, to
the reflected and refracted intensities /g and Ipep wWith Ipepr = 1 — Iges.

“jgt” — 2008/7/28 — 15:06 — page 8 — #8

8 journal of graphics tools

Figure 4. Illustration of silhouette artifacts reduction (Glass). Base (left), using
silhouette reduction (right).

Silhouette Artifacts Reduction As described earlier, smoothing the depth
map can lead to some unwanted artifacts. The drop of depth map values from
maximum depth to liquid depth results in high normal variations, resulting
in a silhouette surrounding the liquid. This side effect can be reduced by sil-
houette detection. Therefore, the smoothed depth map is modified such that
every depth value z, # 1 is set to 0. Hence, a binary image of the depth map
is generated, which is smoothed by the same kernel as described in Section
2.2, resulting in a silhouette map. According to this silhouette map, the lig-
uid is just rendered at fragment positions with values equal to one, otherwise
the background is rendered. Thus, the unrealistic visual effects within the
silhouette are reduced (Figure 4).

4. Examples

We use several real-time 3D-particle simulations with up to 140,000 particles
to analyze the performance of Instant Liquids. Take note, that some simu-
lations do not utilize a Navier-Stokes Equation solver. Thus, the simulated
behavior does not correspond to real liquids in these scenarios. Since a real-
time, physically based simulation of such an amount of particles has not been
presented so far, we utilize among others simple integration schemes to ana-
lyze our fast rendering method in real-time environments with many particles.
In the following we would like to describe these simulations. Quantitative per-
formance results are discussed in Section 5.

Glass, Cube We use a standard interactive SPH simulation with 2,000
simulated particles (Figure 4, cube: See accompanying video.).

Breaking Waves The complex and fascinating physical behavior of break-
ing waves has attracted the interest of researchers in the field of computer
graphics for quite a while. However, physics-based simulations including ren-
dering at interactive rates have not been presented yet. Recently, [Thuerey

“jgt” — 2008/7/28 — 15:06 — page 9 — #9

Cords and Staadt: Instant Liquids 9

S2
$4

S2

Figure 5. Principle of breaking waves simulation. A 2D SPH simulation is fulfilled
(left). The last n timesteps (here: n=2) of simulation data is aligned slice based
(right). Thus, the symmetry if a breaking wave can be approximated.

et al. 07] has pushed the limit with an animation-based breaking waves ap-
proach coupled to a shallow water simulation. Our simulation method for
breaking waves uses a sliced-based approach and in combination with our
rendering method, real-time results can be achieved.

A 2D SPH simulation is the basis for our breaking waves simulation (140,000
particles, 200 slices). The idea is, to construct a 3D breaking wave from a
2D simulation. A breaking wave in reality is strongly self-similar. The self-
similarity is used, to construct the breaking wave. Therefore, a 2D breaking
wave is generated by the use of an external force field within a 2D simulation —
the result is shown in Figure 5a. The last n timesteps of all particle positions
within the 2D simulation are stored (p(t;),7 = —n...0) and are used later to
construct the wave.

The front shape of breaking waves is defined by slices s; along the z-axis (i
index of z-values, Figure 5b). The slices are constructed by the use of the last
n 2D particle sets p(t;). The mapping of point sets to slices is described by the
time-spacing function f(i) € {-n,...,0}: s; = p(ts;). Hence, the function
f(@) describes the shape of the breaking wave. E.g., f(i) = 0 describes a
straight font and f(i) = —i describes a spiky front. In our example (Figure
6), f(7) is described by a superposition of wave functions. In principle, any
wave shape can be modeled in a similar way. The benefit of this approach lies
in the reduced amount of simulation time. Only a fast 2D SPH-simulation

Figure 6. Breaking Waves. Basic approach (left), using an additional velocity map,
to represent spray (right). The velocity map is defined by particle velocities (here:
along the y-axis) at a given position.

“jgt” — 2008/7/28 — 15:06 — page 10 — #10

10 journal of graphics tools

Figure 7. Waterfall. The same scene is rendered with different screen-space reso-
lutions: 512 x 512 (a), 1024 x 1024 (b), Scene: 1024 x 1024 — Liquid: 512 x 512 (c).

with few particles has to be fulfilled, whereas the 3D wave is constructed by
the use of recent slice data.

To enhance visualization of breaking waves (Figure 6), we use an addi-
tional velocity map, to represent spray. Particle velocities are projected into
screen-space as described in Section 2.1 for particle positions — resulting in the
velocity map. Within the rendering pass, the liquids color is shifted to white
according to velocity information. In Figure 6b, the velocity in y-direction is
used for shifting.

Waterfall The waterfall is realized by utilizing mass-point systems. The
frequent use of mass-point systems for approximating liquid simulations is
based on the assumption that the interaction between falling liquid particles,
splashing particles or drops is negligible. The only acting force is gravity and
no liquid specific forces have to be calculated. Hence, the integration over time
is trivial, effective and very fast. Thus, more particles can be used in fountains,
splashes or falling drops (compared to full physics-based simulation), allowing
a more plausible real-time simulation. The waterfall (60,000-100,000 particles,
Figures 1 and 7) is approximated by a randomized particle creation process,
where particles are created randomly within a given volume distributed along
a main velocity vector.

Dragon The dragon (64,474 particles, Figure 8) is created by positioning
the particles according to the given vertexes. The simulation is realized by
utilizing a mass-point simulation as well.

Pool To provide enhanced visualization of mass-point simulations, we use
the mode-splitting technique [Cords 07], to simulate the liquid surface in the
pool examples realistically (Figures 7 and 8). The idea is, to couple a 2D

“jgt” — 2008/7/28 — 15:06 — page 11 — #11

Cords and Staadt: Instant Liquids 11

Figure 8. Liquid dragon in pool (consisting of 64,474 particles) is falling at inter-
active rates (timesteps t; with ¢ = 0, 10, 20, 30).

wave equation solver with a 3D SPH simulation and utilize a height field
based rendering approach. Thus, detailed surface waves can be created (e.g.,
by falling particles).

5. Discussion

The presented experiments were performed on a dual-core 2,6 GHz AMD
Athlon 64 CPU, 2GB of RAM and an ATT Radeon x1900 GPU (512MB). Since
we use the GPU for rendering and would like to demonstrate our method on
a typical personal computer, we have to use a CPU-based implementation for
all presented simulations. By using an additional graphics card, GPU-based
simulation methods can be used to improve overall system performance.

The performance measures of our implementation, using just one core for
the simulated examples, are shown in Table 1. We present the results for
screen-space resolutions of 512 x 512 and 1024 x 1024. All measured frame
rates lie between 30-60 FPS and allow full interactivity (see accompanying
video). Note that most of the time is spent for simulation, not for render-
ing with Instant Liquids. Due to the image-based approach, the complex-
ity and, thus, the performance directly depends on the number of rendered
fragments. It may be practical, to create the normal map (representing the
liquid) at reduced resolution and upsample it bilinearly. Afterwards, the re-
flection /refraction step is executed according to the full resolution. Results
for this special case are also included in Table 1. Thus, a very good perfor-
mance/quality tradeoff is achieved (Figure 7) — all other images within this
paper were generated using this technique. Due to the use of an image-space
approach, the resulting object topology depends on the resolution. For screen-
space resolutions of 1024 x 1024 performance decreases, due to the intense use
of the fragment shader.

In addition to the Instant Liquids algorithm we employ the mode-splitting
method (see Section 4, Figures 7, 8), resulting in frame rates of approximately

“gt” — 2008/7/28 — 15:06 — page 12 — #12

12 journal of graphics tools
. 512 1024 512/1024
Smliz oo z L z L
[ms] [ms] [ms] [fps] [ms] [ms] [fps] [ms] [ms] [fps]

Dragon | 150/ 1.9 0.13 58.7| 3.3 28 47.3| 1.9 0.13 58.7
Waterfall | 22.1| 29 053 39.1| 3.1 26 359| 29 0.61 387
Waves 93| 9.0 043 532|120 2.7 415| 9.0 0.46 53.1
Glass 13.5| 3.5 0.12 584| 51 3.1 46.0f 3.5 0.26 57.9
Cube 13.3| 53 057 529| 9.0 3.8 387 53 073 525

Table 1. Performance measurements of the Instant Liquids method in different sce-
narios. Shown are the times needed for simulation (sim), scene and point rendering
(e.g., creating the depth map Z) and the additional Instant Liquids method (IL) —
at different resolutions.

25 FPS using mainly one single core. Only the height field surface extraction
is fulfilled on the second core. Instant Liquids run times are similar to the
scenes without pool (Table 1).

The complexity of the technique scales linearly. Within the creation of
the depth map the complexity depends on the number of particles n: O(n).
In the following steps, the complexity depends on the number of processed
fragments: O(W x H). Hence, processing time increases linearly according to
the number of particles and according to the screen resolution.

In the remainder of this section we discuss some of the limitations of our
method. For static objects (e.g., a stopped animation), blobby artifacts can
occur while rotating the object as depicted in Figure 9.

As mentioned before, the smoothing step described in Section 2.2 can lead
to visual artifacts at the silhouette. The method introduced in Section 3 effec-
tively reduces these artifacts at the liquid’s outer silhouette for convex shapes.
In the case of concave shapes or multiple liquids, however, those artifacts can
even occur within the liquid’s contour. In the case of multiple liquid volumes,
these artifacts can be alleviated following a multipass rendering approach:
Each liquid volume is rendered separately and, thus, the overlapping contours
are not smoothed.

In the case of concave surface shapes, however, it is not as easy to solve
this problem without significant performance hits. In our method, smoothing
is an essential step for generating the surface. A more sophisticated edge-
preserving filter could be used to solve the problem for concave shapes. Stan-
dard edge preserving smoothing filters (e.g., median or bilateral filters) cannot
handle the problem, since the depth map mainly consists of discrete depth
values. More complex edge preserving reconstruction algorithms (e.g., [Gi-
jbels et al. 06]) can handle those situations, but these approaches are too
complex to operate in real time. Even with our simple separable binomial fil-

“gt” — 2008/7/28 — 15:06 — page 13 — #13

Cords and Staadt: Instant Liquids 13

JELESANESIN S TR - hSF 3 e i T b hSF 3
Figure 9. Artifacts appear while rendering static objects. A static liquid object
within a turbulent situation is rotated slightly (along y-axis). Thereby, the shape
changes slightly and smooth. This example utilizes just 2,000 particles — the side
effect is reduced for significantly more particles, since splat radius and smoothing
kernel size can be reduced.

ter, smoothing is the performance bottleneck of Instant Liquids. In practice,
smoothing artifacts within concave liquid volumes occur mostly in turbulent
situations. In fast animations, the resulting visual artifacts can be seen (e.g.,
Figure 9), but are acceptable for real-time environments where we have to
trade off accuracy for high performance and interactivity.

Furthermore, the use of single refraction can lead to implausible results
in the case of breaking waves, since situations occur where double refrac-
tion would occur in reality. In principle, Instant Liquids could be expanded
to rendering of front- and back-face liquids. Therefore, the normal map is
generated within a two-pass approach as a front and back view of the liquid.
Subsequently, a real-time rendering approach for transparent objects with two
interfaces can be adapted (e.g., [Wyman 05]).

Another problem within the field of particle-based surface reconstruction is
the visual loss of volume in situations where particle density decreases strongly
(e.g., particles separate within simulation). The use of implicit functions (or,
in our case, the smoothing step) cannot produce a closed surface for those
particles. This undesirable effect could be reduced by increasing the splat
radiuses in those situations (e.g., depending on local density).

Compared to the Screen Space Meshes approach [Miiller et al. 07], our
method can visualize much more particles at same frame rates. Mller et al
report frame rates for different scenarios with and without the use of Screen
Space Meshes. Among others, they report 65 FPS for the SPH-simulation of
5000 particles. Including the Screen Space Meshes approach the frame rate
drops to 55 FPS with 5000 triangles and to 40 FPS with 20,000 triangles. For
environments with up to 16,000 particles, they report frame rates less than 23
FPS. The Instant Liquids method renders more than 100,000 particles with
comparable or better frame rates (Table 1), running entirely on the GPU

“gt” — 2008/7/28 — 15:06 — page 14 — #14

14 journal of graphics tools

and thus, relieving the CPU whereas the Screen Space Meshes method is
performed on the CPU and GPU.

The Instant Liquids method outperforms the particle splatting method as
well [Adams et al. 06]. This method uses an additive alpha blending for in-
terpolating normals in screen space. They report frame rates of round about
10 FPS for environments with approximate 100,000 particles and 100 FPS
for environments with approximate 10,000 particles. These performances are
measured without an underlying simulation — only the rendering performance
is given in FPS. Our wave and waterfall examples simulate and render 100,000
or more particles with 38 and 53 FPS. Beside their use of a GeForce 7800
graphics card, the performance gain of Instant Liquids result from the expen-
sive two-pass rendering approach and the computationally expensive blending
steps used in [Adams et al. 06]. Additionally, the particle splatting method re-
sult in unrealistic silhouettes, since individual particles are still visible. More-
over, our examples seem to be more detailed and our reflection and refraction
method seems to be more realistically as well.

Hence, the Instant Liquids method described in this work significantly im-
prove performance of surface extraction of particle clouds in interactive envi-
ronments. In principle, our technique can be used for screen-space lighting of
polygonal objects without given normals as well. Therefore, the depth map is
generated as the typical depth map of the polygonal object and the smoothing
step can be disregarded. The depth map is given to the normal generation
step and can be directly rendered afterwards as described in Section 2.4.

References

[Adams et al. 06] Bart Adams, Toon Lenaerts, and Philip Dutre. “Particle
Splatting: Interactive Rendering of Particle-Based Simulation Data.”
Technical Report CW 458, Katholieke Universiteit Leuven.

[Cords 07] H. Cords. “Mode-Splitting for Highly Detailed, Interactive Liquid
Simulation.” Proceedings of Conference on Computer Graphics and Inter-
active Techniques in Australasia and Southeast Asia (Graphite), pp. 265—
272.

[Gijbels et al. 06] Irene Gijbels, Alexandre Lambert, and Peihua Qiu. “Edge-
Preserving Image Denoising and Estimation of Discontinuous Surfaces.”

IEEE Transactions on Pattern Analysis and Machine Intelligence 28:7
(2006), 1075-1087.

[Lorensen and Cline 87] W. E. Lorensen and H. E. Cline. “Marching cubes: A
high resolution 3D surface construction algorithm.” In Computer Graph-
ics (Proceedings of SIGGRAPH 87, 21, 21, pp. 163-169. ACM, 1987.

“gt” — 2008/7/28 — 15:06 — page 15 — #15

Cords and Staadt: Instant Liquids 15

[Miiller et al. 03] M. Miiller, D. Charypar, and M. Gross. “Particle-based fluid
simulation for interactive applications.” In Proceedings of Symposium on
Computer animation, pp. 154-159. Eurographics Association, 2003.

[Miiller et al. 07] M. Miiller, S. Schirm, and S. Duthaler. “Screen space
meshes.” In Proceedings of Symposium on Computer animation, pp. 9-15.
Eurographics Association, 2007.

[Sousa 05] T. Sousa. “Generic Refraction Simulation.” In GPU Gems 2,
pp- 295-305. Addison-Wesley, 2005.

[Stam 99] J. Stam. “Stable Fluids.” In Proceedings of ACM SIGGRAPH
1999, Computer Graphics Proceedings, pp. 121-128. ACM Press/ACM
SIGGRAPH, 1999.

[Tessendorf 04] J. Tessendorf. “Simulating Ocean Water.” In Course Notes
Siggraph: The Elements of Nature: Interactive and Realistic Techniques
(Course 31), 2004.

[Thuerey et al. 07] N. Thuerey, M. Miiller, S. Schirm, and M. Gross. “Real-
time Breaking Waves for Shallow Water Simulation.” In Proceedings of
Pacific Graphics, 2007.

[Wyman 05] Chris Wyman. “An approximate image-space approach for in-
teractive refraction.” ACM Transactions on Graphics 24:3 (2005), 1050
1053.

‘Web Information:

Accompanying video (DivX):
http://www.informatik.uni-rostock.de/~hc009/videos/instantliquids.avi

Hilko Cords, Oliver Staadt

Institute of Computer Science

Visual Computing Group
Albert-Einstein-Str. 21

18051 Rostock, Germany

{hilko.cords, oliver.staadt } @uni-rostock.de

Received [DATE]; accepted [DATE].

